If it's not what You are looking for type in the equation solver your own equation and let us solve it.
315+(-62y)+3y^2=0
We get rid of parentheses
3y^2-62y+315=0
a = 3; b = -62; c = +315;
Δ = b2-4ac
Δ = -622-4·3·315
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-62)-8}{2*3}=\frac{54}{6} =9 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-62)+8}{2*3}=\frac{70}{6} =11+2/3 $
| 3(4-2)=-x+1 | | 16=-3(7a-5) | | 2x-4=5+7x | | -5(3k+2)=20 | | X*1.5x=60,000,000 | | 49=-7a | | -5(-5y+5)=0 | | 14-3k=k+2 | | 11x-2=14-9 | | 3x+2=50+x | | 4^x-6=5x | | (3x+2)(4-5x)=0 | | 3/4=z-1/2 | | 31=d=(-1.4) | | x2+24x-650=0 | | 3x+7=0.3x | | 8=-5a-2 | | 1.11^x=3 | | 5x+2x+5=150 | | 6=2x^2+7x-13 | | 2^x-4=12 | | 2x+5+5x+2x+5+5x=150 | | x+(x+.6)=100 | | x+3x-13=171 | | x*0.3=56-x | | x.03=56-x | | 3x-13=171 | | 63-8p=-9 | | 10/50=20/x | | 0=-16t^2+96t+170 | | 50/x=10/20 | | 50/x=1020 |